Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Energy ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Energy Research
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An energy storage system configuration strategy of public buildings for PV local consumption and three-phase unbalance management

Authors: Shibo Li; Xingying Chen; Yangyi Hu; Lei Gan; Zheng Zhou;

An energy storage system configuration strategy of public buildings for PV local consumption and three-phase unbalance management

Abstract

As the high carbon emission entities in the city, laying photovoltaic (PV) panels for public buildings is an effective way to reduce building carbon emissions. Meanwhile, public buildings play an important role as charging station access for the explosive growth of electric vehicles. However, the disorderly charging behavior of single-phase charging piles exacerbates the existing three-phase unbalance inside the buildings, which in turn affects operating costs and PV consumption. Energy storage system (ESS) configuration is considered an effective solution. Thus, An ESS configuration strategy is proposed for public buildings aiming at PV local consumption and three-phase unbalance management. To quantify the correlation between multiple loads and PV output, an improved affinity-propagation clustering algorithm based on the spatial weighted matrix distance is developed to obtain operational typical power supply-demand modes. Based on the construction of the three-phase power supply system with both single-phase and three-phase ESSs, a bi-level planning model is formulated for the configuration and operation optimization of ESSs inside the public building. The upper-level problem aims to minimize the life cycle cost of ESS allocation. The lower-level model deals with the coordinated economic scheduling of single-phase ESS and three-phase ESS under the obtained typical operational modes. Numerical results show the effectiveness and rationality of the proposed clustering algorithm and ESS configuration strategy.

Related Organizations
Keywords

public building, typical power supply-demand mode selection, three-phase unbalance management, energy storage system configuration, A, spatial weighted matrix distance-based affinity-propagation clustering algorithm, General Works

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold