
arXiv: 2307.10463
This paper describes a simple, but effective sampling method for optimizing and learning a discrete approximation (or surrogate) of a multi-dimensional function along a one-dimensional line segment of interest. The method does not rely on derivative information and the function to be learned can be a computationally-expensive ``black box'' function that must be queried via simulation or other means. It is assumed that the underlying function is noise-free and smooth, although the algorithm can still be effective when the underlying function is piecewise smooth. The method constructs a smooth surrogate on a set of equally-spaced grid points by evaluating the true function at a sparse set of judiciously chosen grid points. At each iteration, the surrogate's non-tabu local minima and maxima are identified as candidates for sampling. Tabu search constructs are also used to promote diversification. If no non-tabu extrema are identified, a simple exploration step is taken by sampling the midpoint of the largest unexplored interval. The algorithm continues until a user-defined function evaluation limit is reached. Numerous examples are shown to illustrate the algorithm's efficacy and superiority relative to state-of-the-art methods, including Bayesian optimization and NOMAD, on primarily nonconvex test functions.
58 pages, 7 main figures, 29 total figures
derivative-free optimization, Optimization and Control (math.OC), Numerical methods for mathematical programming, optimization and variational techniques, active learning, tabu search, FOS: Mathematics, Mathematical programming, surrogate model, black-box optimization, Mathematics - Optimization and Control, Operations research, mathematical programming, Gaussian process regression
derivative-free optimization, Optimization and Control (math.OC), Numerical methods for mathematical programming, optimization and variational techniques, active learning, tabu search, FOS: Mathematics, Mathematical programming, surrogate model, black-box optimization, Mathematics - Optimization and Control, Operations research, mathematical programming, Gaussian process regression
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
