Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doaj.org/art...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/2cdc7...
Article . 2018
Data sources: DOAJ
https://dx.doi.org/10.18720/mc...
Other literature type . 2018
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biostable silicic rock-based glass ceramic foams

Биостойкие пеноситаллы на основе кремнеземсодержащих пород
Authors: Aleksej Kravchuk; Sergej Kaznacheev; Elena Zaharova; Vladimir Erofeev; Alexander Rodin;

Biostable silicic rock-based glass ceramic foams

Abstract

The search for the possibility of expanding the resource base through the use of local rocks, as well as reducing the cost of final product, is one of the scientific research areas in the field of obtaining foam glass-based building materials. The aim of the research is the development of compositions and recommendations for the production of silicic rock-based glass ceramic foams. These studies will allow to create strong and durable building materials with low density and thermal conductivity, as well as increased biological stability. The results of studying the phase transformations occurring in the charge (tripoli : soda ash) during heating, obtained by thermal analysis methods are presented as well as the production technology, physico-mechanical and thermophysical properties of the developed glass ceramic foams. As a result, construction materials resistant to aggressive media with a density of 200 to 600 kg/m3, thermal conductivity from 0.053 to 0.115 W/m∙°C, compressive strength from 1.2 to 9.8 MPa, have been developed. Due to its properties, developed glass ceramic foams will be used primarily as insulants for the construction of nuclear power plants, in the gas and oil industries, industrial and civil engineering.

Расширение сырьевой базы за счёт применения местных горных пород, а также снижение стоимости готовой продукции, является одним из научных направлений исследования в области получения строительных материалов из пеностекла. Целью исследований является разработка составов и рекомендаций по получению пеноситаллов на основе кремнеземсодержащих пород. Данные исследования позволят создать прочные и долговечные строительные материалы с низкой плотностью и теплопроводностью, повышенной биологической стойкостью. Представлены результаты исследований фазовых превращений, происходящих в шихте (трепел : кальцинированная сода) при нагревании, полученные методами термического анализа; а также технология получения, физико-механические и теплофизические свойства разработанных пеноситаллов. В результате разработаны строительные материалы плотностью от 200 до 600 кг/м3, теплопроводностью от 0,053 до 0,115 Вт/м∙°С, прочностью при сжатии от 1,2 до 9,8 МПа, стойкие в условиях агрессивного воздействия биологических сред. Разработанные пеноситаллы благодаря своим свойствам найдут достойное применение в первую очередь в качестве утеплителя при строительстве АЭС, в газо- и нефтепромышленности, промышленном и гражданском строительстве.

Keywords

glass ceramic foams, Building construction, silicic rock, пеноситалл, теплоизоляционный материал, Engineering (General). Civil engineering (General), thermal insulation material, биологическая стойкость, кремнеземсодержащая порода, TA1-2040, biostability, TH1-9745

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Top 10%
Top 10%