Downloads provided by UsageCounts
arXiv: 2011.13514
handle: 2117/367130
This work presents the face-centred finite volume (FCFV) paradigm for the simulation of compressible flows. The FCFV method defines the unknowns at the face barycentre and uses a hybridisation procedure to eliminate all the degrees of freedom inside the cells. In addition, Riemann solvers are defined implicitly within the expressions of the numerical fluxes. The resulting methodology provides first-order accurate approximations of the conservative quantities, i.e. density, momentum and energy, as well as of the viscous stress tensor and of the heat flux, without the need of any gradient reconstruction procedure. Hence, the FCFV solver preserves the accuracy of the approximation in presence of distorted and highly stretched cells, providing a solver insensitive to mesh quality. In addition, FCFV is capable of constructing non-oscillatory approximations of sharp discontinuities without resorting to shock capturing or limiting techniques. For flows at low Mach number, the method is robust and is capable of computing accurate solutions in the incompressible limit without the need of introducing specific pressure correction strategies. A set of 2D and 3D benchmarks of external flows is presented to validate the methodology in different flow regimes, from inviscid to viscous laminar flows, from transonic to subsonic incompressible flows, demonstrating its potential to handle compressible flows in realistic scenarios.
38 pages, 22 figures
FOS: Computer and information sciences, :Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC], FOS: Physical sciences, finite volume method, Computer science--Mathematics, Classificació AMS::65 Numerical analysis::65L Ordinary differential equations, Face-centred, :Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC], hybridisable discontinuous Galerkin, Computational Engineering, Finance, and Science (cs.CE), Finite volume methods for initial value and initial-boundary value problems involving PDEs, compressible flows, Equacions diferencials--solucions numèriques, Informàtica--Matemàtica, 76M12, 76Nxx, 65M08, 65M12, 76G25, 76H05, FOS: Mathematics, Incompressible limit, Mathematics - Numerical Analysis, :68 Computer science::68R Discrete mathematics in relation to computer science [Classificació AMS], :65 Numerical analysis::65L Ordinary differential equations [Classificació AMS], Computer Science - Computational Engineering, Finance, and Science, Difference equations--Numerical solutions, Finite volume method, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica, face-centred, Fluid Dynamics (physics.flu-dyn), Hybridisable discontinuous Galerkin, Finite volume methods applied to problems in fluid mechanics, Physics - Fluid Dynamics, Numerical Analysis (math.NA), Computational Physics (physics.comp-ph), Classificació AMS::68 Computer science::68R Discrete mathematics in relation to computer science, 620, Riemann solvers, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, Compressible flows, Compressible fluids and gas dynamics, Physics - Computational Physics, incompressible limit
FOS: Computer and information sciences, :Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC], FOS: Physical sciences, finite volume method, Computer science--Mathematics, Classificació AMS::65 Numerical analysis::65L Ordinary differential equations, Face-centred, :Matemàtiques i estadística::Anàlisi numèrica [Àrees temàtiques de la UPC], hybridisable discontinuous Galerkin, Computational Engineering, Finance, and Science (cs.CE), Finite volume methods for initial value and initial-boundary value problems involving PDEs, compressible flows, Equacions diferencials--solucions numèriques, Informàtica--Matemàtica, 76M12, 76Nxx, 65M08, 65M12, 76G25, 76H05, FOS: Mathematics, Incompressible limit, Mathematics - Numerical Analysis, :68 Computer science::68R Discrete mathematics in relation to computer science [Classificació AMS], :65 Numerical analysis::65L Ordinary differential equations [Classificació AMS], Computer Science - Computational Engineering, Finance, and Science, Difference equations--Numerical solutions, Finite volume method, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica, face-centred, Fluid Dynamics (physics.flu-dyn), Hybridisable discontinuous Galerkin, Finite volume methods applied to problems in fluid mechanics, Physics - Fluid Dynamics, Numerical Analysis (math.NA), Computational Physics (physics.comp-ph), Classificació AMS::68 Computer science::68R Discrete mathematics in relation to computer science, 620, Riemann solvers, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, Compressible flows, Compressible fluids and gas dynamics, Physics - Computational Physics, incompressible limit
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 45 | |
| downloads | 43 |

Views provided by UsageCounts
Downloads provided by UsageCounts