
Suppose that Ω is a compact Hausdorff space with a preorder [les ] whose graph is closed, and let Ω∘ be an open subset of Ω. This paper provides conditions sufficient to allow every increasing bounded real continuous function on Ω∘ to be extended to an increasing real continuous function on Ω. These conditions are: (i) that Ω is a Stonian space, and (ii) that the set C↑(Ω, [les ]) of increasing real continuous functions on Ω is a regular Dedekind complete sublattice of C(Ω). Under these conditions it is also shown that C↑(Ω, [les ]) is generated by idempotents, and an extension theorem for idempotents is proved.
preorder, uniform approximation, Lattices of continuous, differentiable or analytic functions, Algebraic properties of function spaces in general topology, compact space, Extension of maps, lattice, continuous functions
preorder, uniform approximation, Lattices of continuous, differentiable or analytic functions, Algebraic properties of function spaces in general topology, compact space, Extension of maps, lattice, continuous functions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
