Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/focs61...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
INRIA2
Conference object . 2024
License: CC BY
Data sources: INRIA2
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-Rennes 1
Conference object . 2024
License: CC BY
Data sources: HAL-Rennes 1
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Naively Sorting Evolving Data is Optimal and Robust

Authors: Giakkoupis, George; Kiwi, Marcos; Los, Dimitrios;

Naively Sorting Evolving Data is Optimal and Robust

Abstract

We study sorting in the evolving data model, introduced by [AKMU11], where the true total order changes while the sorting algorithm is processing the input. More precisely, each comparison operation of the algorithm is followed by a sequence of evolution steps, where an evolution step perturbs the rank of a random item by a "small" random value. The goal is to maintain an ordering that remains close to the true order over time. Previous works have analyzed adaptations of classic sorting algorithms, assuming that an evolution step changes the rank of an item by just one, and that a fixed constant number $b$ of evolution steps take place between two comparisons. In fact, the only previous result achieving optimal linear total deviation, by [BvDEGJ18a], applies just for $b=1$. We analyze a very simple sorting algorithm suggested by [M14], which samples a random pair of adjacent items in each step and swaps them if they are out of order. We show that the algorithm achieves and maintains, with high probability, optimal total deviation, $O(n)$, and optimal maximum deviation, $O(\log n)$, under very general model settings. Namely, the perturbation introduced by each evolution step is sampled from a general distribution of bounded moment generating function, and we just require that the average number of evolution steps between two sorting steps be bounded by an (arbitrary) constant, where the average is over a linear number of steps. The key ingredients of our proof are a novel potential function argument that inserts "gaps" in the list of items, and a general analysis framework which separates the analysis of sorting from that of the evolution steps, and is applicable to a variety of settings for which previous approaches do not apply. Our results settle conjectures and open problems in the aforementioned works, and provide theoretical support for empirical observations in [BvDEGJ18b].

40 pages, 6 figures

Keywords

Sorting algorithms, FOS: Computer and information sciences, [MATH.MATH-PR] Mathematics [math]/Probability [math.PR], G.3, Comparison sorting, [INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS], 68W20, 68W40, 68P10, Randomised algorithms, Potential functions, Stochastic processes, F.2.2; G.3, Computer Science - Data Structures and Algorithms, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Evolving data, Distributed algorithms, Noisy information, Data Structures and Algorithms (cs.DS), F.2.2, Incomplete information

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities