Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1038/s41598...
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doaj.org/article/8f0a6...
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.60692/08...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/yp...
Other literature type . 2024
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep learning hybridization for improved malware detection in smart Internet of Things

تهجين التعلم العميق لتحسين اكتشاف البرامج الضارة في إنترنت الأشياء الذكية
Authors: Abdulwahab Ali Almazroi; Nasir Ayub;

Deep learning hybridization for improved malware detection in smart Internet of Things

Abstract

AbstractThe rapid expansion of AI-enabled Internet of Things (IoT) devices presents significant security challenges, impacting both privacy and organizational resources. The dynamic increase in big data generated by IoT devices poses a persistent problem, particularly in making decisions based on the continuously growing data. To address this challenge in a dynamic environment, this study introduces a specialized BERT-based Feed Forward Neural Network Framework (BEFNet) designed for IoT scenarios. In this evaluation, a novel framework with distinct modules is employed for a thorough analysis of 8 datasets, each representing a different type of malware. BEFSONet is optimized using the Spotted Hyena Optimizer (SO), highlighting its adaptability to diverse shapes of malware data. Thorough exploratory analyses and comparative evaluations underscore BEFSONet’s exceptional performance metrics, achieving 97.99% accuracy, 97.96 Matthews Correlation Coefficient, 97% F1-Score, 98.37% Area under the ROC Curve(AUC-ROC), and 95.89 Cohen’s Kappa. This research positions BEFSONet as a robust defense mechanism in the era of IoT security, offering an effective solution to evolving challenges in dynamic decision-making environments.

Related Organizations
Keywords

Optimization, Artificial intelligence, IoT Security, Computer Networks and Communications, Science, Flexibility (engineering), IoT security, Internet of Things, Malware, Article, Data science, Anomaly Detection in High-Dimensional Data, Big data, Characterization and Detection of Android Malware, Deep Learning, Artificial Intelligence, Computer security, Botnet, Machine learning, FOS: Mathematics, Data mining, Biology, Ecology, Q, Statistics, R, Computer science, Intrusion Detection, Adaptability, World Wide Web, Detection, FOS: Biological sciences, Malware detection, Signal Processing, Computer Science, Physical Sciences, Network Intrusion Detection and Defense Mechanisms, BERT-based neural network, Medicine, Botnet Detection, The Internet, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
Green
hybrid