Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analytical method to study a mathematical model of wave processes under two­point time conditions

Authors: Zinovii Nytrebych; Volodymyr Ilkiv; Petro Pukach; Oksana Malanchuk; Ihor Kohut; Andriy Senyk;

Analytical method to study a mathematical model of wave processes under two­point time conditions

Abstract

Research and analysis of dynamic processes in oscillatory systems are closely connected to the establishment of exact or approximate analytical solutions to the problems of mathematical physics, which model such systems. The mathematical models of wave propagation in oscillatory systems under certain initial conditions at a fixed time are well known in the literature. However, wave processes in lengthy structures subject to an external force only and at the assigned states of the process at two points in time have been insufficiently studied. Such processes are modeled by a two-point time problem for the inhomogeneous wave equation in an unbounded domain t>0, x∈ℝ s . The model takes into consideration the assignment of a linear combination with unknown amplitude of oscillations and the rate of its change at two points in time. A two-point problem, generally speaking, is the ill-posed boundary value problem, since the respective homogeneous problem has non-trivial solutions. A class of quasi-polynomials has been established as the class of the existence of a single solution to the problem. This class does not contain the non-trivial elements from the problem's kernel, which ensures the uniqueness of solution to the problem. We have proposed a precise method to build the solution in the specified class. The essence of the method is that the problem's solution is represented as the action of a differential expression, whose symbol is the right-hand side of the equation, on some function of parameters. The function is constructed in a special way using the equation and two-point conditions, and has special features associated with zeroes of the denominator – the characteristic determinant of the problem. The method is illustrated by the description of oscillatory processes within an infinite string and a membrane. The main practical application of the constructed method is the possibility to adequately mathematically model the oscillatory systems, which takes into consideration a possibility to control the system's parameters. Such a control over parameters makes it possible to perform optimal synthesis and design of parameters for the relevant technical systems in order to analyze and account for special features in the dynamic modes of oscillations

Related Organizations
Keywords

oscillatory systems; mathematical models of wave processes; differential-symbol method; two-point problem; wave equation, колебательные системы; математические модели волновых процессов; дифференциально-символьный метод; двухточечная задача; волновое уравнение, UDC 534.1+517.95, коливальні системи; математичні моделі хвильових процесів; диференціально-символьний метод; двоточкова задача; хвильове рівняння

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 1
  • 3
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
7
Average
Average
Top 10%
3
1
gold