
Sampling-based algorithms for path planning, such as the Rapidly-exploring Random Tree (RRT), have achieved great success, thanks to their ability to efficiently solve complex high-dimensional problems. However, standard versions of these algorithms cannot guarantee optimality or even high-quality for the produced paths. In recent years, variants of these methods, such as T-RRT, have been proposed to deal with cost spaces: by taking configuration-cost functions into account during the exploration process, they can produce high-quality (i.e., low-cost) paths. Other novel variants, such as RRT*, can deal with optimal path planning: they ensure convergence toward the optimal path, with respect to a given path-quality criterion. In this paper, we propose to solve a complex problem encompassing this two paradigms: optimal path planning in a cost space. For that, we develop two efficient sampling-based approaches that combine the underlying principles of RRT* and T-RRT. These algorithms, called T-RRT* and AT-RRT, offer the same asymptotic optimality guarantees as RRT*. Results presented on several classes of problems show that they converge faster than RRT* toward the optimal path, especially when the topology of the search space is complex and/or when its dimensionality is high.
[SPI.AUTO] Engineering Sciences [physics]/Automatic, Electrical engineering. Electronics Nuclear engineering, [INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO], [INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO], [SPI.AUTO]Engineering Sciences [physics]/Automatic, 004, 510
[SPI.AUTO] Engineering Sciences [physics]/Automatic, Electrical engineering. Electronics Nuclear engineering, [INFO.INFO-RB] Computer Science [cs]/Robotics [cs.RO], [INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO], [SPI.AUTO]Engineering Sciences [physics]/Automatic, 004, 510
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 105 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
