Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Multiscale Modeling ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Multiscale Modeling and Simulation
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Self-Consistent Effective Equations Modeling Blood Flow in Medium-to-Large Compliant Arteries

Self-consistent effective equations modeling blood flow in medium-to-large compliant arteries
Authors: Canic, Suncica; Lamponi, Daniele; Mikelic, Andro; Tambaca, Josip;

Self-Consistent Effective Equations Modeling Blood Flow in Medium-to-Large Compliant Arteries

Abstract

We study the flow of an incompressible viscous fluid through a long tube with compliant walls. The flow is governed by a given time dependent pressure head difference. The Navier-Stokes equations for an incompressible viscous fluid are used to model the flow, and the Navier equations for a curved, linearly elastic membrane to model the wall. Employing the asymptotic techniques typically used in thin domains, we derive a set of effective equations that hold in medium-to-large compliant vessels for laminar flow regimes. The main novelty is the derivation of the effective equations that do not assume any {; ; ; \sl ad hoc}; ; ; closure, typically assumed in the derivation of one-dimensional models. Using ideas from homogenization theory for porous media flows, we obtain a closed system of effective equations that are of Biot type with memory. Memory accounts for the wave-like phenomena in the problem. Although the equations are two-dimensional, their simple structure enables a design of a numerical algorithm that has complexity of a one-dimensional solver. Our numerical simulations show that our model captures two-dimensional effects that cannot be captured using standard one-dimensional methods.

Related Organizations
Keywords

Physiological flow, fluid-structure interaction; incompressible Newton fluid; linear elastic membrane; effective model, Asymptotic methods, singular perturbations applied to problems in fluid mechanics, Applications of PDE in areas other than physics, PDEs in connection with fluid mechanics, Physiological flows, Biot flow with memory, Other free boundary flows; Hele-Shaw flows, Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.), Homogenization applied to problems in fluid mechanics, blood flow, Navier-Stokes equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
bronze