
Load forecasting is an important machine learning problem in the field of power system, which is of great significance to power system source load balance, power supply planning and system maintenance. With the development of power technology, fine-grained load data become more easily available, which puts forward new requirements for load forecasting accuracy. In this paper, we use a deep learning framework, namely conditional autoencoder, to forecast day-ahead load. And the conditional autoencoder extracts the characteristics of load time series through deep neural network and finds the sequence pattern of historical data. In addition, we use the load data of different time scales for training, so as to improve the accuracy of the model. In this paper, the real data of regenerative electric boiler in Jilin Province are used for load forecasting, and the effectiveness of the model is verified.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
