
This study explores the potential of using tweets to predict article retractions, by analyzing the Twitter mention data of retracted articles as the treatment group and unretracted articles that were matched as a control group. The results show that tweets could predict article retractions with an accuracy of 57%-60% by machine learning models. Sentiment analysis is not effective in predicting article retractions. The study sheds light on a novel method of detecting scientific misconduct in the early stage.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
