Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/greent...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
ResearchGate Data
Preprint . 2021
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Binary Search Algorithm based Optimal Sizing of Photovoltaic and Energy Storage Systems

Authors: Debnath, Anjan; Temitayo O Olowu; Parvez, Imtiaz; Sarwat, Arif;

A Binary Search Algorithm based Optimal Sizing of Photovoltaic and Energy Storage Systems

Abstract

The use of PVs and storage systems behind-the-meter provides backup power supply to owners as well as capable of providing ancillary services to the power grid such as peak load shifting, demand response, energy arbitrage amongst others. This paper proposes a binary-search based optimization algorithm determines the size of photovoltaic (PV) plus battery standalone system in order to meet a defined load profile. The objective function formulation minimizes the overall system cost and makes sure that the total load rejection is zero by the PV-plus-battery (PPB) system for the load profile considered throughout the year. The optimization variable set in the proposed formulation are the number of the PVs and the batteries. The battery state-of-charge, the number of PVs and batteries are set as the optimization constraints. The proposed algorithm is fed with a year-long actual irradiance and load profile data for facility located in Miami FL. The cost factors for the PV and battery are also input to the proposed algorithm. The results show that the proposed algorithm can achieve a zero load deficit for the period and the load profile considered.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!