Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA2arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
External research report . 2022
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
Conference object . 2022
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/ipdpsw...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Decentralized in-order execution of a sequential task-based code for shared-memory architectures

Authors: Castes, Charly; Agullo, Emmanuel; Aumage, Olivier; Saillard, Emmanuelle;

Decentralized in-order execution of a sequential task-based code for shared-memory architectures

Abstract

Abstract:Decentralized in-order execution of a sequential task-based code for shared-memory architecturesCharly Castes, Emmanuel Agullo, Olivier Aumage, Emmanuelle SaillardProject-Teams HiePACS and STORM Research Report n° 9450 — January 2022 — 30 pagesThe hardware complexity of modern machines makes the design of adequate pro- gramming models crucial for jointly ensuring performance, portability, and productivity in high- performance computing (HPC). Sequential task-based programming models paired with advanced runtime systems allow the programmer to write a sequential algorithm independently of the hard- ware architecture in a productive and portable manner, and let a third party software layer —the runtime system— deal with the burden of scheduling a correct, parallel execution of that algorithm to ensure performance. Many HPC algorithms have successfully been implemented following this paradigm, as a testimony of its effectiveness.Developing algorithms that specifically require fine-grained tasks along this model is still considered prohibitive, however, due to per-task management overhead [1], forcing the programmer to resort to a less abstract, and hence more complex “task+X” model. We thus investigate the possibility to offer a tailored execution model, trading dynamic mapping for efficiency by using a decentralized, conservative in-order execution of the task flow, while preserving the benefits of relying on the sequential task-based programming model. We propose a formal specification of the execution model as well as a prototype implementation, which we assess on a shared-memory multicore architecture with several synthetic workloads. The results show that under the condition of a proper task mapping supplied by the programmer, the pressure on the runtime system is significantly reduced and the execution of fine-grained task flows is much more efficient.

Keywords

fine-grain, Programmation à base de tâches, support d’exécution, multicore, runtime system, ordonnancement, Task-based programming, multicœur, shared-memory, décentralisé, dans l’ordre, grain fin, decentralized, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], mémoire partagée, in-order, scheduling

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities