
handle: 21.11116/0000-0005-8705-D
Center-based clustering, in particular k-means clustering, is frequently used for point data. Its advantages include that the resulting clustering is often easy to interpret and that the cluster centers provide a compact representation of the data. Recent theoretical advances have been made in generalizing center-based clustering to trajectory data. Building upon these theoretical results, we present practical algorithms for center-based trajectory clustering.
Computational Geometry, Algorithms and Data Structures, Clustering, Trajectories
Computational Geometry, Algorithms and Data Structures, Clustering, Trajectories
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
