
The paper presents the of influence peroxide ammonium, alkali, nitric acid, organosolvent and "aqueous ammonia soaking" (AAS) delignification methods on the degree of removal of lignin from non-wood lignocellulosic waste walnut shell Juglans Regia L. and apricot seed Prunus Armeniaca L. It is shown that the maximum degree of delignification (94%) is achieved when processing raw materials with 42 wt% HNO3 and 20 wt% NaOH; the minimum is at peroxide-ammonia treatment (80%). We found that the greatest specific surface area (202 m2∙g-1) provided by the application 42 wt% HNO3, and a maximum iodine number (32 mg∙g-1) when using 25 wt% NH4OH. Delignification significantly increases the specific surface area (5 m2∙g-1 to 120–200 m2∙g-1) iodine number (6.35 mg∙g-1 to 25 to 32 mg∙g-1) of biomass, however, at 45–55% reduced exchange capacity of the material. The obtained cellulose intermediates having acceptable physical and chemical characteristics can be used for further preparation of available sorbents or ion exchange materials. In accordance with the principles of "green chemistry", it is proposed to dispose the spent delignification solutions from AAS and nitric acid methods in liquid nitrogen fertilizers producing.
specific surface, pore volume, non-wood biomass, предобработка, лигнин, lignin, pre-treatment, удельная поверхность, cellulose, объём пор, целлюлоза, недревесная биомасса
specific surface, pore volume, non-wood biomass, предобработка, лигнин, lignin, pre-treatment, удельная поверхность, cellulose, объём пор, целлюлоза, недревесная биомасса
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
