
doi: 10.1007/bf03321016
handle: 11693/48794 , 11693/50650
Let \(R_q (z,t)=\frac 1{\pi} \operatorname{Im} \frac{(1+tz)^q}{(t-z)(1+t^2)^q}\), where \(q =0,1,2, \dots\). The authors propose the representation \(u(z)=\int_{-\infty}^{+\infty} R_q (z,t) \,d\nu(t)+ \operatorname{Im} P_q(z)\) for a function \(u(z)\) harmonic in the upper half-plane with a polynomial \(P_q(z)\) under some restriction on the Borel measure \(\nu\). For \(q=0\) this representation becomes the classic Poisson formula for the upper half-plane.
Phragmén-Lindelöf principle, Boundary value and inverse problems for harmonic functions in two dimensions, Phragmen - Lindel of Principle, Compactness, Boundary behavior (theorems of Fatou type, etc.) of harmonic functions in two dimensions, Nevanlinna formula, Poisson formula, Green function, Subharmonic function, Integral representations, integral operators, integral equations methods in two dimensions, Poisson integral, Harmonic, subharmonic, superharmonic functions in two dimensions, integral representation of harmonic function
Phragmén-Lindelöf principle, Boundary value and inverse problems for harmonic functions in two dimensions, Phragmen - Lindel of Principle, Compactness, Boundary behavior (theorems of Fatou type, etc.) of harmonic functions in two dimensions, Nevanlinna formula, Poisson formula, Green function, Subharmonic function, Integral representations, integral operators, integral equations methods in two dimensions, Poisson integral, Harmonic, subharmonic, superharmonic functions in two dimensions, integral representation of harmonic function
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
