Downloads provided by UsageCounts
A procedure has been devised for modeling the dynamic processes in the proposed structure of an electromechanical shock absorber. Such shock absorbers can recuperate a part of the energy of oscillations into electrical energy allowing the subsequent possibility to use it by rolling stock. The procedure is based on solving the Lagrange equation for the electromechanical system. The model's features are as follows. The model takes the form of a Cauchy problem, thereby making it possible to use it when simulating the processes of shock absorber operation. Two generalized coordinates have been selected (the charge and displacement of the armature). The components of the Lagrange equation have been identified. Based on the results from magnetic field calculation and subsequent regression analysis, we have derived polynomial dependences of flux linkage derivatives for the current and linear displacement of an armature, which make it possible to identify a generalized mathematical model of the electromechanical shock absorber. The magnetic field calculations, performed by using a finite-element method, have allowed us to derive a digital model of the magnetic field of an electromechanical shock absorber. To obtain its continuous model, a regression analysis of discrete field models has been conducted. When choosing a structure for the approximating model, a possibility to analytically differentiate partial derivatives for all coordinates has been retained. Based on the results from modeling free oscillations, it was established that the maximum module value of current is 0.234 A, voltage – 52.9 V. The process of full damping of oscillations takes about 3 seconds over 4 cycles. Compared to the basic design, the amplitude of armature oscillations and its velocity dropped from 13 to 85 % over the first three cycles, indicating a greater efficiency of electromechanical shock absorber operation in comparison with a hydraulic one. The recuperated energy amounted to 3.3 J, and the scattered energy – 11.5 J.
електромеханічний амортизатор, Lagrange equation, поліноми Чебишева, енергія коливань, метровагон, рівняння Лагранжу, задача Коши, метод скінчених елементів, finite-element method, electromechanical shock absorber; subway car; Chebyshev polynomials; finite-element method; Lagrange equation, UDC 629.429.3:621.313, Chebyshev polynomials, електромеханічний амортизатор; метровагон; поліноми Чебишева; метод скінчених елементів; рівняння Лагранжу, электромеханический амортизатор; метровагонов; полиномы Чебышева; метод конечных элементов; уравнение Лагранжа
електромеханічний амортизатор, Lagrange equation, поліноми Чебишева, енергія коливань, метровагон, рівняння Лагранжу, задача Коши, метод скінчених елементів, finite-element method, electromechanical shock absorber; subway car; Chebyshev polynomials; finite-element method; Lagrange equation, UDC 629.429.3:621.313, Chebyshev polynomials, електромеханічний амортизатор; метровагон; поліноми Чебишева; метод скінчених елементів; рівняння Лагранжу, электромеханический амортизатор; метровагонов; полиномы Чебышева; метод конечных элементов; уравнение Лагранжа
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 3 | |
| downloads | 4 |

Views provided by UsageCounts
Downloads provided by UsageCounts