
Sparse matrix-matrix multiplication is a critical kernel for several scientific computing applications, especially the setup phase of algebraic multigrid. The MPI+X programming model, which is growing in popularity, requires that such kernels be implemented in a way that exploits on-node parallelism. We present a single-pass OpenMP variant of Gustavson’s sparse matrix matrix multiplication algorithm designed for architectures (e.g. CPU or Intel Xeon Phi) with reasonably large memory and modest thread counts (tens of threads, not thousands). These assumptions allow us to exploit perfect hashing and dynamic memory allocation to achieve performance improvements of up to 2x over third-party kernels for matrices derived from algebraic multigrid setup.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
