Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://journals.uran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://journals.uran.ua/tarp/a...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.15587/2312-...
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of natural underground ore mining technologies in energy distributed massifs

Authors: Lyashenko, V.; Khomenko, O.; Topolny, F.; Golik, V.;

Development of natural underground ore mining technologies in energy distributed massifs

Abstract

The object of research is the technology and facilities for underground mining of ores in the disrupted massifs. One of the most problematic places is the formation of man-made voids; which influence the occurrence and redistribution of stress-strain state (SSS) of the rock massif. Their existence in the earth's crust provokes the influence of geomechanical and seismic phenomena; up to the level of earthquakes.The study used:– data from literature sources and patent documentation in the field of technologies and facilities for underground mining of ores in the energy-disrupted massifs of substantiation of technological parameters of operating units;– laboratory and production experiments;– physical modeling and selection of compositions of solidifying mixtures.Analytical researches; comparative analysis of theoretical and practical results by standard and new methods with the participation of the authors were performed.The questions of seismogeodynamic monitoring of the SSS of the rock massif during the safe development of rock-type ore deposits are considered. The interaction of natural and man-made systems providing geomechanical balance of ore-bearing massifs is shown. Possibilities of controlling the geomechanics of a massif with filling of man-made voids with various solid mixtures and tails of underground leaching of metals from substandard ores are investigated. The typification of processes is given and the distinctive features of underground block leaching of metals from rock ores are formulated in the aspect of controlling the geodynamics of the massif. The principle estimation of the combined technologies with rationalization of use of the SSS of the rock massif for regulation of the sign and magnitude of stresses in natural and artificial conditions is shown. The conclusions about the effectiveness of the controlled interaction of natural and man-made systems; ensuring the geomechanical balance of massifs and the earth's surface in the area of subsoil development over a long period of time. The research results can be used in the underground development of ore deposits of complex structure of Ukraine; the Russian Federation; the Republic of Kazakhstan and other developed mining countries of the world.

Country
Ukraine
Keywords

550, stress-strain state; rock massif; underground development; environmental protection technology; geomechanical balance, UDC 622.273:65.011.12(088.8), rock massif, geomechanical balance, напруженно-деформаціонний стан; гірський масив; підземна розробка; природоохоронна технологія; геомеханічна збалансованість, УДК 622.273:65.011.12(088.8), underground development, environmental protection technology, stress-strain state, напряженно-деформационное состояние; горный массив; подземная разработка; природоохранная технология; геомеханическая сбалансированность

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 2
  • 3
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
8
Top 10%
Top 10%
Top 10%
3
2
Green
gold