Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geophysic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Atmospheres
Article . 2000 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

O+ phase bunching as a source for stable auroral arcs

Authors: Lars P. Block; Paul L. Rothwell; Carl-Gunne Fälthammar; Michael B. Silevitch;

O+ phase bunching as a source for stable auroral arcs

Abstract

We propose a model to explain how ion dynamics create an Alfvén wave generator in the equatorial region that can be applied to the stable arc problem. For example, in the earthward drifting magnetotail plasma, phase bunching of O+ ions (and to a much lesser extent of the H+ ions) can be caused by a weak (∼1×10−9 Vm−2) electric field gradient [Rothwell et al., 1994]. This leads to density striations in the GSM frame. O+ density striations in the earthward drifting plasma frame are seen as a tailward propagating source of Alfvén waves where the hydrogen ions provide the polarization current of the wave. A transformation to the GSM frame will yield a static, oblique wave structure similar to that previously treated. The waves propagate from the equatorial region to both ionospheres where they are reflected. The ionospheric boundary condition when combined with a magnetospheric boundary condition allows a solution of the wave amplitudes in terms of the striation structure. The frequency of the Alfvén wave and the associated wavelengths are also determined by the striation driver. We find that the magnitude of the parallel current density at the ionosphere has a spatial resonance when the distance between the ionosphere and the equatorial plane is equal to a quarter wavelength along Bo. In that case, the magnitude of the parallel current density at the ionosphere is of the order of 10 μA m−2 and peaks for striation wavelengths (as mapped to the ionosphere) of 10–40 km, which is comparable to the transverse scale of auroral arcs. The associated Poynting flux incident on the ionosphere is found to be ∼ 2 mWm−2 and represents a net transfer of energy from the magnetosphere to the ionosphere as recently observed by experimenters studying substorm onsets. We find that in the steady state the power extracted from the bulk flow to power the arc is balanced by energy provided by the solar wind through the cross‐tail electric field.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
bronze