Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Computational Physics
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2024
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High order conservative LDG-IMEX methods for the degenerate nonlinear non-equilibrium radiation diffusion problems

Authors: Zheng, Shaoqin; Tang, Min; Zhang, Qiang; Xiong, Tao;

High order conservative LDG-IMEX methods for the degenerate nonlinear non-equilibrium radiation diffusion problems

Abstract

In this paper, we develop a class of high-order conservative methods for simulating non-equilibrium radiation diffusion problems. Numerically, this system poses significant challenges due to strong nonlinearity within the stiff source terms and the degeneracy of nonlinear diffusion terms. Explicit methods require impractically small time steps, while implicit methods, which offer stability, come with the challenge to guarantee the convergence of nonlinear iterative solvers. To overcome these challenges, we propose a predictor-corrector approach and design proper implicit-explicit time discretizations. In the predictor step, the system is reformulated into a nonconservative form and linear diffusion terms are introduced as a penalization to mitigate strong nonlinearities. We then employ a Picard iteration to secure convergence in handling the nonlinear aspects. The corrector step guarantees the conservation of total energy, which is vital for accurately simulating the speeds of propagating sharp fronts in this system. For spatial approximations, we utilize local discontinuous Galerkin finite element methods, coupled with positive-preserving and TVB limiters. We validate the orders of accuracy, conservation properties, and suitability of using large time steps for our proposed methods, through numerical experiments conducted on one- and two-dimensional spatial problems. In both homogeneous and heterogeneous non-equilibrium radiation diffusion problems, we attain a time stability condition comparable to that of a fully implicit time discretization. Such an approach is also applicable to many other reaction-diffusion systems.

Related Organizations
Keywords

predictor-corrector procedure, IMEX, conservative, non-equilibrium radiation diffusion, local discontinuous Galerkin method, high order, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, Mathematics - Numerical Analysis, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green