Downloads provided by UsageCounts
doi: 10.1002/asi.24395
handle: 2117/341408
AbstractA common intermediate language representation in neural machine translation can be used to extend bilingual systems by incremental training. We propose a new architecture based on introducing an interlingual loss as an additional training objective. By adding and forcing this interlingual loss, we can train multiple encoders and decoders for each language, sharing among them a common intermediate representation. Translation results on the low‐resource tasks (Turkish‐English and Kazakh‐English tasks) show a BLEU improvement of up to 2.8 points. However, results on a larger dataset (Russian‐English and Kazakh‐English) show BLEU losses of a similar amount. While our system provides improvements only for the low‐resource tasks in terms of translation quality, our system is capable of quickly deploying new language pairs without the need to retrain the rest of the system, which may be a game changer in some situations. Specifically, what is most relevant regarding our architecture is that it is capable of: reducing the number of production systems, with respect to the number of languages, from quadratic to linear; incrementally adding a new language to the system without retraining the languages already there; and allowing for translations from the new language to all the others present in the system.
Incremental training, Intermediate representations, Computational linguistics, Intermediate languages, Bilingual systems, Traducció automàtica, Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Processament de la parla i del senyal acústic, :Enginyeria de la telecomunicació::Processament del senyal::Processament de la parla i del senyal acústic [Àrees temàtiques de la UPC], Architecture-based, Lingüística computacional, :Informàtica::Intel·ligència artificial::Llenguatge natural [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural, Machine translating, Encoders and decoders
Incremental training, Intermediate representations, Computational linguistics, Intermediate languages, Bilingual systems, Traducció automàtica, Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Processament de la parla i del senyal acústic, :Enginyeria de la telecomunicació::Processament del senyal::Processament de la parla i del senyal acústic [Àrees temàtiques de la UPC], Architecture-based, Lingüística computacional, :Informàtica::Intel·ligència artificial::Llenguatge natural [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural, Machine translating, Encoders and decoders
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 36 | |
| downloads | 62 |

Views provided by UsageCounts
Downloads provided by UsageCounts