Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/iccc51...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy Efficient Clustering Protocol Based on Binary SALP Swarm Algorithm for Heterogeneous Wireless Sensor Networks

Authors: Qiang Tu; Yitong Liu; Yi Xie; Xingcheng Liu;

Energy Efficient Clustering Protocol Based on Binary SALP Swarm Algorithm for Heterogeneous Wireless Sensor Networks

Abstract

Energy efficiency is one of the major challenges in wireless sensor network (WSN) applications. Cluster-based routing is a well-known topology control technique, which is considered as non-deterministic polynomial (NP)-hard. In this work, the problems of energy-efficient clustering approach and routing optimization between cluster heads (CHs) and the sink are studied. We present an energy balanced clustering protocol using binary salp swarm algorithm (ECBS) for heterogeneous WSNs. SALP swarm algorithm (SSA) is a novel meta-heuristic algorithm with strong global search capability. We introduce key factors such as CHs energy, cluster quality, and network coverage into the SSA to find the optimal clustering scheme. In order to further effectively utilize energy and minimize energy expenditure, we propose a method called the two-level gradient forwarding tree determined by a cost function. In this method, the single hop and multi-hop transmission manners for the routing between CHs and the sink are provided. Experimental results indicate that the proposed routing effectively extends the stability period and lifespan of the overall network when compared with other known cluster-based routing protocols.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!