Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Microwaves Anten...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Microwaves Antennas & Propagation
Article . 2010 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Digital signal processor against field programmable gate array implementations of space–code correlator beamformer for smart antennas

Authors: DİNÇER, HASAN; TANGEL, ALİ; ŞAHİN, SALİH; KÜÇÜK, KEREM; KAVAK, ADNAN; Dikmese, S.;

Digital signal processor against field programmable gate array implementations of space–code correlator beamformer for smart antennas

Abstract

Software radio implementations of beamformers on programmable processors such as digital signal processor (DSP) and field programmable gate array (FPGA) still remain as a challenge for the integration of smart antennas into existing wireless base stations for 3G systems. This study presents the comparison of DSP- and FPGA-based implementations of space–code correlator (SCC) beamformer, which is practical to use in CDMA2000 systems. Implementation methodology is demonstrated and results regarding beamforming accuracy, weight vector computation time (execution time) and resource utilisation are presented. The SCC algorithm is implemented on Texas Instruments (TI) TMS320C6713 floating-point digital signal processors (DSPs) and Xilinx's VirtexIV family FPGA. In signal modelling, CDMA2000 reverse link format is employed. The results show that beamformer weights can be obtained within less than 10 ms via implementation on c6713 DSP with direction-of-arrival (DOA) search resolution of Δthetas=2°, whereas it can be achieved within less than 25 µs on VirtexIV FPGA for five-element uniform linear array (ULA). These results demonstrate that FPGA implementation achieves weight vector computation in much smaller time (nearly 500 times) as compared to DSP implementation in this study.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Published in a Diamond OA journal