Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Photochemical & Photobiological Sciences
Article
License: publisher-specific, author manuscript
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Photochemical & Photobiological Sciences
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Suppression of T24 human bladder cancer cells by ROS from locally delivered hematoporphyrin-containing polyurethane films

Authors: Byeong Ju Kwon; Do Hyun Kim; Min Ah Koo; Seung Hee Hong; Gyeung Mi Seon; Mi Hee Lee; Min Sung Kim; +1 Authors

Suppression of T24 human bladder cancer cells by ROS from locally delivered hematoporphyrin-containing polyurethane films

Abstract

Systemic injection of a photosensitizer is a general method in photodynamic therapy, but it has complications due to the unintended systemic distribution and remnants of photosensitizers. This study focused on the possibility of suppressing luminal proliferative cells by excessive reactive oxygen species from locally delivered photosensitizer with biocompatible polyurethane, instead of the systemic injection method. We used human bladder cancer cells, hematoporphyrin as the photosensitizer, and polyurethane film as the photosensitizer-delivering container. The light source was a self-made LED (510 nm, 5 mW cm-2) system. The cancer cells were cultured on different doses of hematoporphyrin-containing polyurethane film and irradiated with LED for 15 minutes and 30 minutes each. After irradiating with LED and incubating for 24 hours, cell viability analysis, cell cycle analysis, apoptosis assay, intracellular and extracellular ROS generation study and western blot were performed. The cancer cell suppression effects of different concentrations of the locally delivered hematoporphyrin with PDT were compared. Apoptosis dominant cancer cell suppressions were shown to be hematoporphyrin dose-dependent. However, after irradiation, intracellular ROS amounts were similar in all the groups having different doses of hematoporphyrin, but these values were definitely higher than those in the control group. Excessive extracellular ROS from the intended, locally delivered photosensitizer for photodynamic treatment application had an inhibitory effect on luminal proliferative cancer cells. This method can be another possibility for PDT application on contactable or attachable lesions.

Related Organizations
Keywords

Cell Survival, Ultraviolet Rays, Polyurethanes, 610, Cell Cycle/drug effects, Antineoplastic Agents, Apoptosis, Polyurethanes/chemistry/*pharmacology, Cell Proliferation/drug effects, Antitumor Drug Screening Assays, Hematoporphyrins/chemistry/*pharmacology, Structure-Activity Relationship, Drug Delivery Systems, Antineoplastic Agents/chemistry/*pharmacology, Tumor Cells, Cultured, Humans, Drug Dose-Response Relationship, Cell Proliferation, Cultured Tumor Cells, Photosensitizing Agents, Dose-Response Relationship, Drug, Apoptosis/drug effects, Cell Cycle, *Drug Delivery Systems, Urinary Bladder Neoplasms/*drug therapy/metabolism/pathology, Hematoporphyrins, Photochemotherapy, Urinary Bladder Neoplasms, Reactive Oxygen Species/analysis/*metabolism, Drug Screening Assays, Antitumor, Reactive Oxygen Species, Photosensitizing Agents/chemistry/*pharmacology, Cell Survival/drug effects

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
hybrid