Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eastern-European Jou...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Eastern-European Journal of Enterprise Technologies
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Formation of the steam phase in superheated liquids in the state of metastable equilibrium

Authors: Pavlenko, Anatoliy; Koshlak, Hanna;

Formation of the steam phase in superheated liquids in the state of metastable equilibrium

Abstract

The results of studies of vaporization processes in liquids in a metastable state were presented. Regularities of heat and mass exchange in thermodynamically unstable liquids (superheated liquids) were considered. A mathematical model of the mutual dynamic effect of boiling drops of a multicomponent liquid was developed with the help of which the level of dynamic effects was estimated from the point of view of possibility of fragmentation of drops of the primary mixture. Accuracy of the known criterion equations for the described homogenization technology was estimated. It was shown that instability of the Rayleigh-Taylor type has the greatest effect on fragmentation of drops. In the study of the velocity and pressure fields, data were obtained that show that in the inter-bubble space of the ensemble, even with monotonically expanding bubbles, there are sharp jumps in pressures and velocities characteristic of the turbulent flow. This type of flow contributes to intensification and stimulation of heat and mass exchange and hydrodynamic processes in the liquid phase of the bubble system. The obtained dependences make it possible to qualitatively assess critical forces sufficient for the thermodynamic fragmentation of the secondary phase. The time and energy parameters necessary for fragmentation of drops were determined. They depend on the temperature and size of the disperse phase. The proposed method for determining basic thermodynamic parameters of superheated liquid and vapor is necessary for predicting energy parameters of the thermodynamic homogenization technology.

Keywords

UDC 532.529, superheated liquid; vaporization; heat and mass exchange in metastable liquids; mathematical modeling, перегретая жидкость; парообразование; тепломассообмен в метастабильных жидкостях; математическое моделирование, перегріта рідина; пароутворення; тепломасообмін у метастабільних рідинах; математичне моделювання

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold