Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Scientific Computing
Article . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hierarchical Orthogonal Factorization: Sparse Least Squares Problems

Hierarchical orthogonal factorization: sparse least squares problems
Authors: Abeynaya Gnanasekaran; Eric Darve;

Hierarchical Orthogonal Factorization: Sparse Least Squares Problems

Abstract

In this work, we develop a fast hierarchical solver for solving large, sparse least squares problems. We build upon the algorithm, spaQR (sparsified QR), that was developed by the authors to solve large sparse linear systems. Our algorithm is built on top of a Nested Dissection based multifrontal QR approach. We use low-rank approximations on the frontal matrices to sparsify the vertex separators at every level in the elimination tree. Using a two-step sparsification scheme, we reduce the number of columns and maintain the ratio of rows to columns in each front without introducing any additional fill-in. With this improvised scheme, we show that the runtime of the algorithm scales as $\mathcal{O}(M \log N)$ and uses $\mathcal{O}(M)$ memory to store the factorization. This is achieved at the expense of a small and controllable approximation error. The end result is an approximate factorization of the matrix stored as a sequence of sparse orthogonal and upper-triangular factors and hence easy to apply/solve with a vector. Finally, we compare the performance of the spaQR algorithm in solving sparse least squares problems with direct multifrontal QR and CGLS iterative method with a standard diagonal preconditioner.

arXiv admin note: text overlap with arXiv:2010.06807

Related Organizations
Keywords

Numerical solutions to overdetermined systems, pseudoinverses, sparse, 65F08 (Primary), 65F25, 65F50, 65Y20, 65F05 (Secondary), Numerical methods for low-rank matrix approximation; matrix compression, Numerical Analysis (math.NA), G.1.3, Orthogonalization in numerical linear algebra, QR, Computational methods for sparse matrices, least squares, Complexity and performance of numerical algorithms, linear time, FOS: Mathematics, hierarchical solver, Mathematics - Numerical Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green