
A set valued function \(U:{\mathbb{R}}\to 2^ X\) (where X is a real normed space) is said to be quadratic iff \(U(s+t)+U(s-t)=2U(s)+2U(t),\) for all s,\(t\in {\mathbb{R}}\). There is proved, among others, that if a quadratic set valued function U:\({\mathbb{R}}\to CC(X)\) (where CC(X) denotes the family of all compact, convex and non-empty subsets of X) is bounded on a subset of \({\mathbb{R}}\) of positive inner Lebesgue measure or if it is measurable, then it is of the form \(U(t)=t^ 2U(1),\) \(t\in {\mathbb{R}}\).
Functional equations for functions with more general domains and/or ranges, quadratic functionals, set valued functions, Functional equations and inequalities
Functional equations for functions with more general domains and/or ranges, quadratic functionals, set valued functions, Functional equations and inequalities
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
