Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of the Sout...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Control in Linear Sobolev Type Mathematical Models

Authors: Zamyshlyaeva, A.A.; Manakova, N.A.; Tsyplenkova, O.N.;

Optimal Control in Linear Sobolev Type Mathematical Models

Abstract

A.A. Zamyshlyaeva1, N.A. Manakova1, O.N. Tsyplenkova1 1South Ural State University, Chelyabinsk, Russian Federation E-mails: zamyshliaevaaa@susu.ru, manakovana@susu.ru, tcyplenkovaon@susu.ru. Алена Александровна Замышляева, доктор физико-математических наук, профессор, кафедра ≪Прикладная математика и программирование≫, Южно- Уральский государственный университет (г. Челябинск, Российская Федерация), zamyshliaevaaa@susu.ru. Наталья Александровна Манакова, доктор физико-математических наук, доцент, кафедра ≪Уравнения математической физики≫, Южно-Уральский государственный университет (г. Челябинск, Российская Федерация), manakovana@susu.ru. Ольга Николаевна Цыпленкова, кандидат физико-математических наук, кафедра ≪Уравнения математической физики≫,Южно-Уральский государственный университет (г. Челябинск, Российская Федерация), tcyplenkovaon@susu.ru. The article presents a review of the work of the Chelyabinsk mathematical school on Sobolev type equations in studying the optimal control problems for linear Sobolev type models with initial Cauchy (Showalter–Sidorov) conditions or initial-final conditions. To identify the nonemptiness of the set of feasible solutions to the control problem we use the phase space method, which has already proved itself in solving Sobolev type equations. The method reduces the singular equation to a regular one defined on some subspace of the original space and applies the theory of degenerate (semi)groups of operators to the case of relatively bounded, sectorial and radial operators. Here mathematical models are reduced to initial (initial-final) problems for an abstract Sobolev type equation. Abstract results are applied to the study of control problems for the Barenblatt–Zheltov–Kochina mathematical model, which describes fluid filtration in a fractured-porous medium, the Hoff model on a graph simulating the dynamics of I-beam bulging in a construction, and the Boussinesq– L¨ove model describing longitudinal vibrations in a thin elastic rod, taking into account inertia and under external load, or the propagation of waves in shallow water. В статье представлен обзор работ челябинской математической школы по уравнениям соболевского типа при исследовании задачи оптимального управления для линейных моделей соболевского типа с начальным условием Коши (Шоуолтера – Сидорова) или начально-конечным условием. Для выявления непустоты множества допустимых решений задачи управления используется уже хорошо зарекомендовавший себя при решении уравнений соболевского типа метод фазового пространства, заключающийся в редукции сингулярного уравнения к регулярному, определенному на некотором подпространстве исходного пространства и применении теории вырожденных (полу)групп операторов на случай относительно ограниченных, секториальных и радиальных операторов. В работе проводится редукция математических моделей к начальным (начально-конечным) задачам для абстрактного уравнения соболевского типа. Абстрактные результаты применены к исследованию задач управления для математической модели Баренблатта – Желтова – Кочиной, которая моделирует фильтрацию жидкости в трещинновато-пористой среде, модели Хоффа на графе, моделирующей динамику выпучивания двутавровых балок в конструкции, а также модели Буссинеска – Лява, описывающей продольные колебания в тонком упругом стержне с учетом инерции и при внешней нагрузке, либо распространения волн на мелкой воде. The authors express their sincere gratitude to Professor G.A. Sviridyuk for useful consultations, constructive criticism and opportunities provided

Country
Russian Federation
Keywords

модель Чена – Гетина, фазовое пространство, модель Баренблатта – Желтова – Кочиной, модель Девиса, УДК 517.9, Dzektzer model, Barenblatt–Zheltov–Kochina model, Boussinesq–L¨ove model, оптимальное управление, Sobolev type equations, model of an I-beam bulging, optimal control, phase space, модель Буссинеска – Лява, strong solutions, уравнения соболевского типа, модель Хоффа, Chen–Gurtin model, сильные решения

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Top 10%
Top 10%
Green
gold