Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Smoothed finite element method for topology optimization involving incompressible materials

Authors: Li, Eric; Chang, Checheng; He, Zhicheng; Zhang, Zhongpu (Leo) (R19533); Li, Qing;

Smoothed finite element method for topology optimization involving incompressible materials

Abstract

It is well known that the finite element method (FEM) suffers severely from the volumetric locking problem for incompressible materials in topology optimization owing to its numerical ‘overly stiff’ property. In this article, two typical smoothed FEMs with a certain softened effect, namely the node-based smoothed finite element method (NS-FEM) and the cell-based smoothed finite element method, are formulated to model the compressible and incompressible materials for topology optimization. Numerical examples have demonstrated that the NS-FEM with an ‘overly soft’ property is fairly effective in tackling the volumetric locking problem in topology optimization when both compressible and incompressible materials are involved.

Related Organizations
Keywords

topology, XXXXXX - Unknown, finite element method, numerical methods and algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!