
arXiv: 2308.06044
We study the expressive power of first-order logic with counting quantifiers, especially the $k$-variable and quantifier-rank-$q$ fragment $\mathsf{C}^k_q$, using homomorphism indistinguishability. Recently, Dawar, Jakl, and Reggio (2021) proved that two graphs satisfy the same $\mathsf{C}^k_q$-sentences if and only if they are homomorphism indistinguishable over the class $\mathcal{T}^k_q$ of graphs admitting a $k$-pebble forest cover of depth $q$. Their proof builds on the categorical framework of game comonads developed by Abramsky, Dawar, and Wang (2017). We reprove their result using elementary techniques inspired by Dvořák (2010). Using these techniques we also give a characterisation of guarded counting logic. Our main focus, however, is to provide a graph theoretic analysis of the graph class $\mathcal{T}^k_q$. This allows us to separate $\mathcal{T}^k_q$ from the intersection of the graph class $\mathcal{TW}_{k-1}$, that is graphs of treewidth less or equal $k-1$, and $\mathcal{TD}_q$, that is graphs of treedepth at most $q$ if $q$ is sufficiently larger than $k$. We are able to lift this separation to the semantic separation of the respective homomorphism indistinguishability relations. A part of this separation is to prove that the class $\mathcal{TD}_q$ is homomorphism distinguishing closed, which was already conjectured by Roberson (2022).
30 pages, 3 figures
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Mathematics of computing → Graph theory, counting first-order logic, Discrete Mathematics (cs.DM), Treewidth, treedepth, homomorphism indistinguishability, Theory of computation → Finite Model Theory, 004, Computer Science - Discrete Mathematics, Logic in Computer Science (cs.LO), ddc: ddc:004
FOS: Computer and information sciences, Computer Science - Logic in Computer Science, Mathematics of computing → Graph theory, counting first-order logic, Discrete Mathematics (cs.DM), Treewidth, treedepth, homomorphism indistinguishability, Theory of computation → Finite Model Theory, 004, Computer Science - Discrete Mathematics, Logic in Computer Science (cs.LO), ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
