Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Успехи физики металл...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Успехи физики металлов
Article . 2017 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Успехи физики металлов
Article
License: CC BY ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Simulation of the Tracer Diffusion, Bulk Ordering, and Surface Reordering in F.C.C. Structures by Kinetic Mean-Field Method

Authors: V. M. Bezpalchuk; R. Kozubski; A. M. Gusak;

Simulation of the Tracer Diffusion, Bulk Ordering, and Surface Reordering in F.C.C. Structures by Kinetic Mean-Field Method

Abstract

Tracer diffusion and ‘chemical’ (atomic) ordering processes in two face-centred cubic (f.c.c.) binary systems mimicking Ni3Al and FePt were simulated by means of the kinetic mean-field (KMF) method originally proposed by G. Martin in 1990. The systems simulated within the present work were modelled with fixed pair-interaction parameters and saddle-point energies adopted earlier via the comparison of Monte Carlo method modelling and experimental data. In a simulation of tracer migration as well as ordering, the focus was attracted to comparison of activation energies rather than pre-exponential factors of kinetic coefficients. Generally, the mean-field models cannot properly take into account correlation effect that could be important for the tracer diffusion especially for the B2 structures. However, at least for the f.c.c. structures, application of KMF to diffusion and ordering seems demonstrating very reasonable results qualitatively similar to those obtained in kinetic Monte Carlo (KMC) method and realistic experiments. Modelling of Ni- and Al-tracer diffusion in Ni3Al system shows higher diffusivity of Ni atoms as compared with Al ones that is attributed to easier intrasublattice diffusion channel for the Ni atoms in the L12-Ni3Al superstructure. Also, the obtained activation energy for the tracer Al atoms is higher, and its value is closer to activation energy of ordering kinetics. Computer experiments for the ordering kinetics showed that, in contrast to exchange mechanism, L12-type ordering kinetics is described via two relaxation times in case of the vacancy diffusion mechanism. Modelling of the discontinuous process of the surface-induced re-orientation of the monatomic Fe and Pt planes in thin FePt film was, in turn, a good test for the stochastic variant of the KMF (SKMF) method. The fact that implementation of the stochastic noise was needed to reproduce the process of a surface nucleation by KMF indicates the correctness of the method.

Country
Poland
Keywords

ordering kinetics, Physics, QC1-999, диффузия меченых атомов, tracer diffusion, кинетический среднеполевой метод, интерметаллиды, атомистическое моделирование, intermetallics, кинетика упорядочения, kinetic mean-field method, atomistic simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
gold