
Recent advances in wireless networking technology and the increasing demand for ubiquitous, mobile connectivity demonstrate the importance of providing reliable systems for managing the reconfiguration and disconnection of components. The design of such systems requires tools and techniques appropriate to the task. Many formal models of computation, including UNITY, are not adequate for expressing reconfiguration and disconnection and are, therefore, inappropriate vehicles for investigating the impact of mobility on the construction of modular and composable systems. Algebraic formalisms such as the /spl pi/-calculus have been proposed for modeling mobility. This paper addresses the question of whether UNITY, a state-based formalism with a foundation in temporal logic, can be extended to address concurrent, mobile systems. In the process, we examine some new abstractions for communication among mobile components that express reconfiguration and disconnection and which can be composed in a modular fashion.
Computer Sciences, Computer Engineering
Computer Sciences, Computer Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
