
The development of automated morphological classification schemes can successfully distinguish between morphological types of galaxies and can be used for studies of the formation and subsequent evolution of galaxies in our universe. In this paper, we present a new automated machine supervised learning astronomical classification scheme based on the Nonnegative Matrix Factorization algorithm. This scheme is making distinctions between all types roughly corresponding to Hubble types such as elliptical, lenticulars, spiral, and irregular galaxies. The proposed algorithm is performed on two examples with different number of image (small dataset contains 110 image and large dataset contains 700 images). The experimental results show that galaxy images from EFIGI catalog can be classified automatically with an accuracy of ∼93% for small and ∼92% for large number. These results are in good agreement when compared with the visual classifications.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
