
handle: 1959.13/1400977
We study the problem of choosing the best subset of$p$features in linear regression, given$n$observations. This problem naturally contains two objective functions including minimizing the amount of bias and minimizing the number of predictors. The existing approaches transform the problem into a single-objective optimization problem. We explain the main weaknesses of existing approaches and, to overcome their drawbacks, we propose a bi-objective mixed integer linear programming approach. A computational study shows the efficacy of the proposed approach.
Linear regression; mixed models, Mixed integer programming, bi-objective mixed integer linear programming, linear regression, best subset selection, Multi-objective and goal programming
Linear regression; mixed models, Mixed integer programming, bi-objective mixed integer linear programming, linear regression, best subset selection, Multi-objective and goal programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
