Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Information Sciencesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Information Sciences
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively

Authors: Yuan Liu; Yikun Hu; Ningbo Zhu; Kenli Li; Juan Zou; Miqing Li;

A decomposition-based multiobjective evolutionary algorithm with weights updated adaptively

Abstract

Abstract Recently, decomposition-based multiobjective evolutionary algorithms (DMEAs) have become more prevalent than other patterns (e.g., Pareto-based algorithms and indicator-based algorithms) for solving multiobjective optimization problems (MOPs). They utilize a scalarizing method to decompose an MOP into several subproblems based on the weights provided, resulting in the performances of the algorithms being highly dependent on the uniformity between the problem’s optimal Pareto front and the distribution of the specified weights. However, weight generation is generally based on a simplex lattice design, which is suitable for “regular” Pareto fronts (i.e., simplex-like fronts) but not for other “irregular” Pareto fronts. To improve the efficiency of this type of algorithm, we develop a DMEA with weights updated adaptively (named DMEA-WUA) for the problems regarding various Pareto fronts. Specifically,the DMEA-WUA introduces a novel exploration versus exploitation model for environmental selection.The exploration process finds appropriate weights for a given problem in four steps: weight generation, weight deletion, weight addition and weight replacement. Exploitation means using these weights from the exploration step to guide the evolution of the population. Moreover, exploration is carried out when the exploitation process is stagnant; this is different from the existing method of periodically updating weights. Experimental results show that our algorithm is suitable for solving problems with various Pareto fronts, including those with “regular” and “irregular” shapes.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!