Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A computational study of time-fractional gas dynamics models by means of conformable finite difference method

Authors: Majeed A. Yousif; Juan L. G. Guirao; Pshtiwan Othman Mohammed; Nejmeddine Chorfi; Dumitru Baleanu;

A computational study of time-fractional gas dynamics models by means of conformable finite difference method

Abstract

<abstract> <p>This paper introduces a novel numerical scheme, the conformable finite difference method (CFDM), for solving time-fractional gas dynamics equations. The method was developed by integrating the finite difference method with conformable derivatives, offering a unique approach to tackle the challenges posed by time-fractional gas dynamics models. The study explores the significance of such equations in capturing physical phenomena like explosions, detonation, condensation in a moving flow, and combustion. The numerical stability of the proposed scheme is rigorously investigated, revealing its conditional stability under certain constraints. A comparative analysis is conducted by benchmarking the CFDM against existing methodologies, including the quadratic B-spline Galerkin and the trigonometric B-spline functions methods. The comparisons are performed using $ {L}_{2} $ and $ {L}_{\infty } $ norms to assess the accuracy and efficiency of the proposed method. To demonstrate the effectiveness of the CFDM, several illustrative examples are solved, and the results are presented graphically. Through these examples, the paper showcases the capability of the proposed methodology to accurately capture the behavior of time-fractional gas dynamics equations. The findings underscore the versatility and computational efficiency of the CFDM in addressing complex phenomena. In conclusion, the study affirms that the conformable finite difference method is well-suited for solving differential equations with time-fractional derivatives arising in the physical model.</p> </abstract>

Keywords

conformable fractional derivative, QA1-939, stability, finite difference method, Mathematics, time-fractional gas dynamics models

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
gold
Related to Research communities