Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://epubs.siam.o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Digital Repository of NTU
Conference object . 2014
https://doi.org/10.1137/1.9781...
Article . 2013 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
u:cris
Conference object . 2014
Data sources: u:cris
MPG.PuRe
Conference object . 2014
Data sources: MPG.PuRe
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Subquadratic-Time Algorithm for Decremental Single-Source Shortest Paths

Authors: Monika Henzinger; Sebastian Krinninger; Danupon Nanongkai;

A Subquadratic-Time Algorithm for Decremental Single-Source Shortest Paths

Abstract

We study dynamic (1 + ε)-approximation algorithms for the single-source shortest paths problem in an unweighted undirected n-node m-edge graph under edge deletions. The fastest algorithm for this problem is an algorithm with O(n 2+o(1)) total update time and constant query time by Bernstein and Roditty (SODA 2011). In this paper, we improve the total update time to O(n 1.8+o(1) + m 1+o(1)) while keeping the query time constant. This running time is essentially tight when m = Ω(n 1.8) since we need Ω(m) time even in the static setting. For smaller values of m, the running time of our algorithm is subquadratic, and is the first that breaks through the quadratic time barrier. In obtaining this result, we develop a fast algorithm for what we call center cover data structure. We also make non-trivial extensions to our previous techniques called lazy- update and monotone Even-Shiloach trees (ICALP 2013 and FOCS 2013). As by-products of our new techniques, we obtain two new results for the decremental all-pairs shortest- paths problem. Our first result is the first approximation algorithm whose total update time is faster than Õ(mn) for all values of m. Our second result is a new trade-off between the total update time and the additive approximation guarantee.

Countries
Singapore, Austria
Keywords

:Science::Mathematics::Discrete mathematics::Algorithms [DRNTU], 102031 Theoretische Informatik, 102031 Theoretical computer science

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Green
bronze