Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2014 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Self-Building and Cluster-Based Cognitive Fault Diagnosis System for Sensor Networks

Authors: ALIPPI, CESARE; ROVERI, MANUEL; TROVO', FRANCESCO;

A Self-Building and Cluster-Based Cognitive Fault Diagnosis System for Sensor Networks

Abstract

Cognitive fault diagnosis systems differentiate from more traditional solutions by providing online strategies to create and update the fault-free and the faulty classes directly from incoming data. This aspect is of paramount relevance within the big data framework, since measurements are there immediately processed to detect and identify the upsurge of potential faults. This paper introduces a novel cognitive fault diagnosis framework for processes described by nonlinear dynamic systems that inspects changes in the existing relationships among sensors. The proposed framework is based on an evolving clustering algorithm that operates in the parameter space of time invariant linear models approximating such relationships. During the operational life, parameter vectors associated with models thought not to belong to the nominal state are either labeled as outlier or fault. New classes of faults, here considered to propagate to the model parameters according to an abrupt profile, are created online as they appear. At the same time, existing classes can merge, depending on the information content carried by incoming data.

Related Organizations
Keywords

Big Data; distributed sensors; fault diagnosis; pattern clustering; unsupervised learning; Big Data framework; adaptive learning; cluster-based cognitive fault diagnosis system; clustering algorithm; information content; invariant linear models; nonlinear dynamic systems; parameter space; parameter vectors; self-building-based cognitive fault diagnosis system; sensor networks; unsupervised clustering-labeling method; Adaptation models; Circuit faults; Clustering algorithms; Dictionaries; Training; Vectors; evolving clustering; fault diagnosis.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%
Green