Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hilbert points in Hardy spaces

Authors: Brevig, Ole Fredrik; Ortega-Cerdà, Joaquim; Seip, Kristian;

Hilbert points in Hardy spaces

Abstract

A Hilbert point in H p ( T d ) H^p(\mathbb {T}^d) , for d ≥ 1 d\geq 1 and 1 ≤ p ≤ ∞ 1\leq p \leq \infty , is a nontrivial function φ \varphi in H p ( T d ) H^p(\mathbb {T}^d) such that ‖ φ ‖ H p ( T d ) ≤ ‖ φ + f ‖ H p ( T d ) \| \varphi \|_{H^p(\mathbb {T}^d)} \leq \|\varphi + f\|_{H^p(\mathbb {T}^d)} whenever f f is in H p ( T d ) H^p(\mathbb {T}^d) and orthogonal to φ \varphi in the usual L 2 L^2 sense. When p ≠ 2 p\neq 2 , φ \varphi is a Hilbert point in H p ( T ) H^p(\mathbb {T}) if and only if φ \varphi is a nonzero multiple of an inner function. An inner function on T d \mathbb {T}^d is a Hilbert point in any of the spaces H p ( T d ) H^p(\mathbb {T}^d) , but there are other Hilbert points as well when d ≥ 2 d\geq 2 . The case of 1 1 -homogeneous polynomials is studied in depth and, as a byproduct, a new proof is given for the sharp Khinchin inequality for Steinhaus variables in the range 2 > p > ∞ 2>p>\infty . Briefly, the dynamics of a certain nonlinear projection operator is treated. This operator characterizes Hilbert points as its fixed points. An example is exhibited of a function φ \varphi that is a Hilbert point in H p ( T 3 ) H^p(\mathbb {T}^3) for p = 2 , 4 p=2, 4 , but not for any other p p ; this is verified rigorously for p > 4 p>4 but only numerically for 1 ≤ p > 4 1\leq p>4 .

Keywords

Hardy spaces, Mathematics - Complex Variables, Funcions de variables complexes, Espais de Hardy, Anàlisi harmònica, Functions of complex variables, Functional Analysis (math.FA), Harmonic analysis, Mathematics - Functional Analysis, Inequalities (Mathematics), Mathematics - Classical Analysis and ODEs, H-espaces, H-espais, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Complex Variables (math.CV), Desigualtats (Matemàtica)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 80
    download downloads 99
  • 80
    views
    99
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
80
99
Green