Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

List-GRAND: A Practical Way to Achieve Maximum Likelihood Decoding

Authors: Syed Mohsin Abbas; Marwan Jalaleddine; Warren J. Gross;

List-GRAND: A Practical Way to Achieve Maximum Likelihood Decoding

Abstract

Guessing Random Additive Noise Decoding (GRAND) is a recently proposed universal Maximum Likelihood (ML) decoder for short-length and high-rate linear block-codes. Soft-GRAND (SGRAND) is a prominent soft-input GRAND variant, outperforming the other GRAND variants in decoding performance; nevertheless, SGRAND is not suitable for parallel hardware implementation. Ordered Reliability Bits-GRAND (ORBGRAND) is another soft-input GRAND variant that is suitable for parallel hardware implementation, however it has lower decoding performance than SGRAND. In this paper, we propose List-GRAND (LGRAND), a technique for enhancing the decoding performance of ORBGRAND to match the ML decoding performance of SGRAND. Numerical simulation results show that LGRAND enhances ORBGRAND's decoding performance by $0.5-0.75$ dB for channel-codes of various classes at a target FER of $10^{-7}$. For linear block codes of length $127/128$ and different code-rates, LGRAND's VLSI implementation can achieve an average information throughput of $47.27-51.36$ Gbps. In comparison to ORBGRAND's VLSI implementation, the proposed LGRAND hardware has a $4.84\%$ area overhead.

This article has been accepted for publication in IEEE Transactions on Very Large Scale Integration (VLSI) Systems. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/TVLSI.2022.3223692

Related Organizations
Keywords

FOS: Computer and information sciences, Ordered reliability bits GRAND (ORBGRAND), Computer Science - Information Theory, Information Theory (cs.IT), Ultra reliable and low-latency communication (URLLC), Guessing random additive noise decoding (GRAND), Maximum likelihood (ML) decoding, Soft GRAND (SGRAND)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Green