
handle: 20.500.12885/2679
The current algorithms use either the full form or the Schur decomposition of the matrix in the inverse scaling and squaring method to compute the matrix logarithm. The inverse scaling and squaring method consists of two main calculations: taking a square root and evaluating the Padé approximants. In this work, we suggest using the structure preserving iteration as an alternative to Denman-Beavers iteration for taking a square root. Numerical experiments show that while using the structure preserving square root iteration in the inverse scaling and squaring method preserves the Hamiltonian structure of matrix logarithm, Denman-Beavers iteration and Schur decomposition cause a structure loss.
Matematik, matrix logarithm, inverse scaling and squaring method, Hamiltonian matrix, Matrix functions, Matrix functions;matrix logarithm;symplectic matrix;Hamiltonian matrix;inverse scaling and squaring method, Mathematical Sciences, symplectic matrix
Matematik, matrix logarithm, inverse scaling and squaring method, Hamiltonian matrix, Matrix functions, Matrix functions;matrix logarithm;symplectic matrix;Hamiltonian matrix;inverse scaling and squaring method, Mathematical Sciences, symplectic matrix
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
