Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Computer and System Sciences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Computer and System Sciences
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

More on change-making and related problems

Authors: Timothy M. Chan; Qizheng He;

More on change-making and related problems

Abstract

Given a set of $n$ integer-valued coin types and a target value $t$, the well-known change-making problem asks for the minimum number of coins that sum to $t$, assuming an unlimited number of coins in each type. In the more general all-targets version of the problem, we want the minimum number of coins summing to $j$, for every $j=0,\ldots,t$. For example, the textbook dynamic programming algorithms can solve the all-targets problem in $O(nt)$ time. Recently, Chan and He (SOSA'20) described a number of $O(t\,\textrm{polylog}\,t)$-time algorithms for the original (single-target) version of the change-making problem, but not the all-targets version. We obtain a number of new results on change-making and related problems, including: 1. A new algorithm for the all-targets change-making problem with running time $\tilde{O}(t^{4/3})$, improving a previous $\tilde{O}(t^{3/2})$-time algorithm. 2. A very simple $\tilde{O}(u^2+t)$-time algorithm for the all-targets change-making problem, where $u$ denotes the maximum coin value. The analysis of the algorithm uses a theorem of Erdős and Graham (1972) on the Frobenius problem. This algorithm can be extended to solve the all-capacities version of the unbounded knapsack problem (for integer item weights bounded by $u$). 3. For the original (single-target) coin changing problem, we describe a simple modification of one of Chan and He's algorithms that runs in $\tilde{O}(u)$ time (instead of $\tilde{O}(t)$). 4. For the original (single-capacity) unbounded knapsack problem, we describe a simple algorithm that runs in $\tilde{O}(nu)$ time, improving previous near-$u^2$-time algorithms. 5. We also observe how one of our ideas implies a new result on the minimum word break problem, an optimization version of a string problem studied by Bringmann et al. (FOCS'17), generalizing change-making (which corresponds to the unary special case).

This is the full version of our ESA 2020 paper

Country
Germany
Keywords

dynamic programming, Frobenius problem, FOS: Computer and information sciences, Combinatorial optimization, 000, Analysis of algorithms and problem complexity, coin changing, Coin changing, Combinatorics in computer science, Dynamic programming, Algorithms on strings, 004, knapsack, fine-grained complexity, The Frobenius problem, Computer Science - Data Structures and Algorithms, Analysis of algorithms, Data Structures and Algorithms (cs.DS), unbounded knapsack, word-break problem, Nonnumerical algorithms, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
hybrid