Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science & Technology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science & Technology Development Journal - Engineering and Technology
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/t7...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/mb...
Other literature type . 2020
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unusual symmetries of the order parameter in cuprates

تماثلات غير عادية لمعلمة الطلب في الكوبرات
Authors: Tran Van Luong; Nguyen Thi Ngoc Nu;

Unusual symmetries of the order parameter in cuprates

Abstract

The BCS superconducting theory, introduced by J. Bardeen, L. Cooper and R. Schriffer in 1957, succeeded in describing and satis-factorily explaining the nature of superconductivity for low-temperature superconductors. However, the BCS theory cannot explain the properties of high-temperature superconductors, discovered by J. G. Bednorz and K. A. Müller in 1986. Although scientists have found a lot of new superconductors and their transition temperatures are constantly increasing, most high-temperature superconductors are found by experiment and so far no theory can fully explain their properties. Many previous studies have suggested that the order parameter in high-temperature copper-based superconductors (cuprate superconductors - cuprates) is in the form of d-wave symmetry, but recent results show that the order parameter has an extended s-wave symmetry (extended s wave). Studying the symmetric forms of order parameters in cuprate can contribute to understanding the nature of high-temperature superconductivity. In this article, the authors present an overview of the development of high-temperature supercon-ductors over the past 30 years and explains unusual symmetries of the order parameter in copper-based superconductors. The com-petition of three coupling mechanisms of electrons in cuprates (the mechanism of coupling through coulomb repulsion, electron-phonon mechanism and spin-fluctuation mechanism) affects the unusual symmetry of the order parameter. The solution of the self-consistency equation in simple cases has been found and the ability to move the phase within the superconducting state has been shown.

Keywords

Superconductivity, Symmetry (geometry), Cuprate Superconductors, Biomedical Engineering, FOS: Physical sciences, Geometry, FOS: Medical engineering, Quantum mechanics, Electron, Cuprate, Inorganic Chemistry, Engineering, FOS: Chemical sciences, FOS: Mathematics, Development of Superconducting Magnets for Particle Accelerators and Fusion Reactors, Physics, High-Temperature Superconductivity, Condensed Matter Physics, Condensed matter physics, High-temperature superconductivity, Chemistry, Superconducting Magnets, Physics and Astronomy, Physical Sciences, Coulomb, Chemistry of Noble Gas Compounds and Interactions, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid
Related to Research communities