Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of the Sout...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MORPHOLOGY OF THE PHASE SPACE OF ONE MATHEMATICAL MODEL OF A NERVE IMPULSE PROPAGATION IN THE MEMBRANE SHELL

МОРФОЛОГИЯ ФАЗОВОГО ПРОСТРАНСТВА ОДНОЙ МАТЕМАТИЧЕСКОЙ МОДЕЛИ РАСПРОСТРАНЕНИЯ НЕРВНОГО ИМПУЛЬСА В МЕМБРАННОЙ ОБОЛОЧКЕ
Authors: Gavrilova, O.V.; Гаврилова, O.В.;

MORPHOLOGY OF THE PHASE SPACE OF ONE MATHEMATICAL MODEL OF A NERVE IMPULSE PROPAGATION IN THE MEMBRANE SHELL

Abstract

The article is devoted to the study of the morphology of the phase space of a degenerate two-component mathematical model of a nerve impulse propagation in the membrane shell. A mathematical model is studied in the case when the parameter at the time derivative of the component responsible for the dynamics of the membrane potential is equal to zero, and the theorem about the fact that the phase space is simple in this case is proved. A mathematical model is also considered in the case when the parameter at the time derivative of the component responsible for the ion currents is equal to zero, and the theorem on the presence of singularities of Whitney assemblies is proved. Based on the results obtained, the phase space of the mathematical model is constructed in the case when the parameters at the time derivative of both components of the system are equal to zero. The author gives examples of the construction of the phase space, illustrating the presence of features in the phase space of the studied problems based on the Galerkin method.

Keywords

система уравнений Фитц Хью–Нагумо, PDEs in connection with biology, chemistry and other natural sciences, Showalter-Sidorov problem, УДК 517.9, задача Шоуолтера–Сидорова, FitzHugh-Nagumo system of equations, Fitz Hugh–Nagumo system of equations, Sobolev type equations, Neural biology, phase space method, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, уравнения соболевского типа, Showalter–Sidorov problem, Computational methods for problems pertaining to biology, метод фазового пространства, Sobolev-type equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold