Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Inverse Problems
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Priorconditioners for linear systems

Authors: Calvetti, Daniela; Somersalo, Erkki;

Priorconditioners for linear systems

Abstract

Summary: The construction of suitable preconditioners for the solution of linear systems by iterative methods continues to receive a lot of interest. Traditionally, preconditioners are designed to accelerate convergence of iterative methods to the solution of the linear system. However, when truncated iterative methods are used as regularized solvers of ill-posed problems, the rate of convergence is seldom an issue, and traditional preconditioners are of little use. Here, we present a new approach to the design of preconditioners for ill-posed linear systems, suitable when statistical information about the desired solution or a collection of typical solutions is available. The preconditioners are constructed from the covariance matrix of the solution viewed as a random variable. Since the construction is based on available prior information, these preconditioners are called priorconditioners. A statistical truncation index selection is also presented. Computed examples illustrate how effective such priorconditioners can be.

Keywords

ill-posed problems, Iterative numerical methods for linear systems, numerical examples, Ill-posedness and regularization problems in numerical linear algebra, preconditioning, priorconditioners, Numerical computation of matrix norms, conditioning, scaling, iterative methods, convergence acceleration

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!