Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://arxiv.org/pdf/1907.0269...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Rennes 1
Conference object . 2019
License: CC BY
Data sources: HAL-Rennes 1
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2025 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of an Inverse Identification Method for Identifying Constitutive Parameters by Metaheuristic Optimization Algorithm: Application to Hyperelastic Materials

Authors: Bastos, G; Tayeb, Adel; Di Cesare, N.; Le Cam, Jean-Benoit; Robin, Eric;

Development of an Inverse Identification Method for Identifying Constitutive Parameters by Metaheuristic Optimization Algorithm: Application to Hyperelastic Materials

Abstract

In the present study, a numerical method based on a metaheuristic parametric algorithm has been developed to identify the constitutive parameters of hyperelastic models, by using FE simulations and full kinematic field measurements. The full kinematic field is measured at the surface of a cruciform specimen submitted to equibiaxial tension. The sample is reconstructed by FE to obtain the numerical kinematic field to be compared with the experimental one. The constitutive parameters used in the numerical model are then modified through the optimization process, for the numerical kinematic field to fit with the experimental one. The cost function is then formulated as the minimization of the difference between these two kinematic fields. The optimization algorithm is an adaptation of the Particle Swarm Optimization algorithm, based on the PageRank algorithm used by the famous search engine Google. INTRODUCTION The constitutive parameters of hyperelastic models are generally identified from three homogeneous tests, basically the uniaxial tension, the pure shear and the equibiaxial tension. From about 10 years, an alternative methodology has been developed [1, 2, 3, 4], and consists in performing only one heterogeneous test as long as the field is sufficiently heterogeneous. This is tipically the case when a multiaxial loading is applied to a 3 branch or a 4-branch cruciform specimen, which induces a large number of mechanical states at the specimen surface. The induced heterogeneity is generally analysed through the distribution of the biaxiality ratio and the maximal eigen value of the strain. The Digital Image Correlation (DIC) technique is generally used to retrieve the different mechanical states induces, and provides the full kinematic field at the specimen surface, i.e. a large number of experimental data to be analysed to identify the constitutive parameters of the behaviour model considered.

Keywords

Inverse Identification, [PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph], Particle Swarm Optimization, [PHYS.MECA.STRU] Physics [physics]/Mechanics [physics]/Structural mechanics [physics.class-ph], Digital Image Correlation, Hyperelasticity, Classical Physics (physics.class-ph), FOS: Physical sciences, [PHYS.MECA.MSMECA] Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph], Physics - Classical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green