Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital library (rep...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Thermal Engineering
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of PCM heat sink shape on cooling of heat-generating elements in electronics

Authors: Bondareva, Nadezhda S.; Sheremet, Mikhail A.;

Influence of PCM heat sink shape on cooling of heat-generating elements in electronics

Abstract

The use of phase change materials in modern electronic technologies expands the range of problems of heat and mass transfer in systems with phase transitions. One of these tasks is the cooling of electronic units by the PCM heat sinks. Studying the effectiveness of PCM based systems is one of the most relevant topics in passive cooling. From the point of view of heat and mass transfer modeling, such systems are complex and, as a rule, are studied experimentally. The present numerical study is devoted to the impact of the geometric configuration of a copper profile on the phase change of lauric acid in the presence of volumetric heat generation element. Several profile models have been considered to increase the effective thermal conductivity of the system, including horizontal flat fins, vertical flat fins, and a profile divided into cells by vertical and horizontal plate fins, each cell is filled with the same volume of lauric acid. It should be noted that such analysis allows understanding the influence of vertical and horizontal orientations of fins on heat transfer enhancement within the heat sink. Moreover, a presence of a heater of constant volumetric heat generation illustrates features of heat removal from such an element. To obtain the most accurate solution, the equations of conjugate natural convection are formulated with the melting/solidification processes employing the non-primitive variables like stream function and vorticity. The finite difference technique is applied in modeling the thermohydrodynamic processes with phase transitions. The impact of the profile shape on the development of convective energy transport and phase transitions is analyzed. The novelty of the present study can be described by the following results. It has been shown that vertical plate fins promote faster thermal dissipation than horizontal fins within the metal structure, however, during phase transformations in cavities, the area enhancement ratio of the heat sink becomes the most important. A large number of cells increases the effective heat capacity of the system and reduces its temperature difference.

Related Organizations
Keywords

материалы с фазовым переходом, естественная конвекция, радиаторы

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 1%
Green