Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Опір матеріалів і те...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determination of crack resistance of a steam turbine rotor under the volume forces action

Authors: Pyskunov, Serhii; Shkril, Oleksij; Maksimyuk, Yuriy;

Determination of crack resistance of a steam turbine rotor under the volume forces action

Abstract

The problem of the crack resistance of a steam turbine rotor disk with an initial semi-elliptical crack is investigated in this paper. The forces affecting the disk are due to its rotation and consist of a load uniformly distributed of the surface rim, modeling the impact of the blades, and mass forces distributed over the volume of the disk. It is assumed that the process of deformation of the rotor disk is linear. The stress intensity factor (CIF) are used to evaluate the fracture resistance. The steam turbine rotor disc is a massive axisymmetric body, which is why a semi-analytic finite element method is used to model the stress-strain state, which has been proven in a number of work for objects of this type. In the first stage, the distribution of stress-strain state of the rotor disc without crack is determined. The obtained results showed that maximum stresses occur in the region of the inner hole of the rotor disk. The following was to determine the fracture resistance of the rotor disc with a crack that may appear under the highest stress level. The configuration of the crack front is elliptical. The obtained results shows that the CIF attains the maximum value at the point furthest from the inner hole. The influence of ellipticity on the maximum values of CIF was investigated. The maximum CIN values for the rotor disc were determined using the approximate method used in the design of such objects. It involves the results of the known formula used to determine the CIF in the plate with a lateral crack. Comparison of results shows the nesecity of calculate such objects in the spatial formulation. There are significant limitations to the use of the two-dimensional approach to determine CIF in such objects.

Проведена оцінка напружено-деформованого стану ротора парової турбіни з початковою напівеліптичною тріщиною при дії об’ємних сил, викликаних відцентровим навантаженням. Отриманий розподіл коефіцієнтів інтенсивності напружень вздовж фронту тріщини. Проведено порівняння з результатами оцінки тріщиностійкості ротора за спрощеними підходами. 

Keywords

finite element method; stress intensity factor; steam turbine rotor; elliptical crack; volume forces, метод скінченних елементів; еліптична тріщина; коефіцієнт інтенсивності напружень; ротор парової турбіни; об’ємні сили

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold